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Summary

A program is underway to improve the efficiency of a three-dimensional, unsteady, Navier-

Stokes code and generalize it for nozzle and turbopump geometries. Code modifications will

include the implementation of parallel processing software, incorporating new physical mod-

els and generalizing the multi-block capability to allow the simultaneous simulation of nozzles

and turbopumps. The modified code will be applied to relevant nozzle and turbopump con-

figurations.

The following results are described in the present progress report:

• Details of code modifications

• Numerical results for a nozzle configuration

• Numerical results for interacting nozzle/blade/vane geometries

• An update on the parallelization of the Navier-Stokes code using MPI software
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Nomenclature

M - Mach number

P - Static pressure

Pt - Total pressure

S - Entropy

T - Static temperature

Tt - Total temperature

c_ - Absolute frame circumferential flow angle

¢/ - Relative frame circumferential flow angle

q_ - Absolute frame radial flow angle

- Relative frame radial flow angle

SUBSCRIPTS

in - Inlet

out - Exit

oe - Free stream

SUPERSCRIPTS

- Relative frame quantity



Introduction

Flow unsteadiness is a major factor in turbine performance and durability. This is es-

pecially true if the turbine is a high work design, compact, transonic, supersonic, counter

rotating, or uses a dense drive gas. The vast majority of modern rocket turbine designs

fall into these categories. For example, the (Space Transportation Main Engine) STME fuel

turbine, a high work, transonic design, was found to have an unsteady interrow shock which

reduced efficiency by 2 points and increased dynamic loading by 24 percent. The Revolu-

tionary Reusable Technology Turbopump (RRTT), which uses full flow oxygen for its drive

gas, was found to shed vortices with such energy as to raise serious blade durability concerns.

In both cases, the sources of the problems were uncovered (before turbopump testing) with

the application of validated, unsteady computational fluid dynamics (CFD) to the designs.

In the case of the RRTT and the Alternate Turbopump Development (ATD) turbines, the

unsteady CFD codes have been used not just to identify problems, but to guide designs

which mitigate problems due to unsteadiness. Using unsteady flow analyses as a part of the

design process will lead to turbine designs with higher performance (which effects tempera-

ture and mass flow rate) and fewer dynamics problems. One drawback to three-dimensional

unsteady flow analyses, however, is that computation times are often on the order of weeks

or months. This time scale does not allow for parametric design studies. The objective

of the current program is to generalize and improve the efficiency of a three-dimensional,

unsteady, Navier-Stokes code. The improved code will be applied to nozzle and turbopump
geometries.

Code Improvements

The following improvements have been made to the CORSAIR analysis during the last
quarter:

The inlet boundary conditions have been modified to allow the modelling of discrete

nozzles. This is accomplished by applying the boundary conditions on a point-wise

basis. The inlet boundary conditions can now be specified to be solid wall, subsonic

inflow or supersonic inflow. Presently, it is assumed that the nozzles are circular or

elliptical in shape. It should be noted that the turbulence quantities are still being

calculated based on the airfoil and endwall surfaces. Eventually, the solid wall portions

of the inlet should also be used to influence the turbulence quantities.

The technique for specifying the initial flow field in nozzle simulations has been mod-

ified. For normal blade row calculations flow quantities are linearly interpolated be-

tween the inlet and exit. in nozzle simulations (where it is assumed that the throat

is choked) the flow quantities are interpolated between the inlet and the throat, and

again between the throat and the exit. Note that for choked flow the throat quantities

are known, and the area ratio can be used to check the Mach number at the inlet.



Application of this techniquehasbeenshownto reducethe CPU time by more than
50%comparedto initializing the flow field by interpolating the flow quantities between
the inlet and exit.

A low-memory versionof the codehasbeenwritten in which many of the subroutines
not necessaryfor nozzlesimulationshavebeeneliminated. This, in turn, has allowed
the elimination of considerablebranching logic. For a given problem size the low-
memoryversionof the requires40%lessmemory,and is 30%faster, than the standard
analysisfor nozzlesimulations

PLOT3D files can now be specifiedto be formatted or unformatted.

A comprehensiveand updatedversionof the CORSAIR User'sManual wascompleted.

Numerical Simulations

FASTRAC Nozzle Operating in RP1

The relevant turbine nozzle geometry in this investigation is from the FASTRAC pro-

gram [1]. Two views of the nozzle grid (constant i- and constant k-planes, respectively)

are shown in Figs. 1 and 2. The computational grid contains 131 points in the streamwise

(i) direction, 81 grid points in circumferential (j) direction and 21 points in the radial (k)

direction. Thus, the computational grid contains a total of 222,831 grid points. The noz-

zle is designed to have an inlet Mach number of M1 _ 0.23 and an exit Mach number

of M2 _ 2.13. The inlet static temperature is 1595 ° R and the ratio of specific heats is

"7 = 1.108. The Reynolds number was set at Re = 1 x 106.

Mach number contours at the inlet and exit of the nozzle are shown in Figs. 3 and 4,

respectively. The average Math number in the inlet plane is approximately M1 = 0.23,

which is in excellent agreement with the design intent. The average Mach number in the

exit plane is approximately M2 = 2.18, which compares favorably with the design intent.

Figures 5 thru 9 illustrate Mach contours along radial sections of the nozzle, beginning near

the centerline and progressing towards the outer casing. These figures indicate that the

highest Mach numbers are located near the centerline. Closer to the outer casing (Figs. 8

and 9) the Mach number decreases due to the endwall boundary layer. Figure 10, which

shows Mach contours in a circumferential (j = 20) plane, highlights the thickening of the

endwall boundary layer downstream of the throat.

The predicted nozzle loss, which is defined as

Ptinle_ -- Pte_it
= (1)

tO PtinIet

was tO = 0.048 using the third-order accurate Upwind scheme [2]. It is interesting to note that

repeating the calculation using a second-order accurate upwind scheme the predicted loss
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wasw = 0.061. Although the losses differed wit]) order of accuracy, the average inlet/exit
Mach numbers and flow patterns were similar.

FASTRAC Nozzle Operating in Nitrogen

A second simulation, which is nearly converged, was performed using nitrogen instead

of RP as the operating fluid. Operating in nitrogen, the nozzle is designed to have an inlet

Math number of M1 ,_ 0.23 and an exit Mach number of M2 _ 2.40. The inlet static

temperature is 5230 R and the ratio of specific heats is 7 = 1.467. Again, the Reynolds

number was set at Re = 1 x 106. The grid topology is identical to that used in the RP
simulation.

Math number contours at the inlet and exit of the nozzle are shown in Figs. 11 and

12, respectively. The average Math number in the inlet plane is approximately M1 = 0.22,

which agrees closely with the design intent. The average Mach number in the exit plane is

approximately M2 = 2.42, which compares favorably with the design intent. Figures 13 thru

17 illustrate Mach contours along radial sections of the nozzle, beginning near the centerline

and progressing towards the outer casing. Qualitatively, the results are similar to those

predicted in the RP simulation. Figure 18, which shows Mach contours in a circumferential

(j = 20) plane, highlights the endwall boundary layer development downstream of the throat.

The predicted loss using the second-order accurate scheme is aJ = 0.071, which is higher

than in the RP simulation. The calculation is currently being repeated using the thrid-order
accurate scheme.

FASTRAC Nozzle/Blade/Vane Geometry

Numerical simulations have been performed for the FASTRAC turbine configuration

consisting of a modelled nozzle exit, a rotor row and a vane row. The actual configuration

consists of 26 nozzles, 147 rotor airfoils and 75 vane airfoils. In the current effort, two blade

count approximations have been tested:

. 1-nozzle/6-rotors/3-vanes - Using this approximation it is assumed that there are 150

rotor airfoils, and the rotors are scaled by 147/150 to maintain the pitch-to-chord ratio.

The modelling of the nozzle is then exact because 6 rotor passages will completely

encompass one nozzle.

. 1-nozzle/2-rotors/1-vane - This scaling also assumes there are 150 rotor airfoils, how-

ever the nozzles now are approximated as a continuous slit around the annulus (see

Fig. 19).

The grid densities (number of passagesxixjxk) for the two simulations are presented in

Tables 1 and 2, respectively. The total number of grid points in the l-nozzle/6-rotor/3-vane



Grid Type Inlet (Nozzle) Rotor Vane
O - 6x91x21x31 3x91x21x31

H lx14x51x31 6x64x21x31 3x82x31x31

Total Points 22,134 605,430 414,129

Table 1: Grid dimensions for the 1-nozzle/6-rotor/3-vane simulation.

Grid Type Inlet (Nozzle) Rotor Vane

O - 2x91x21x31 lx91x21x31

H lx14x51x31 2x64x21x31 lx82x31x31

Total Points 22,134 201,810 138,043

Table 2: Grid dimensions for the 1-nozzle/2-rotor/1-vane simulation.

in the 1-nozzle/2-rotor/1-vane simulation. The average value of y+, the non-dicnensional

distance of the first grid line above the surface was approximately 1.5 for the airfoils surfaces

and 5.0 for the endwall surfaces. A value of y+ _ 5.0 indicates that increased spanwise grid

resolution may be needed.

The turbine is designed to have an inlet Mach number of 311 _ 2.11. The inlet static

temperature is 1291 ° R and the ratio of specific heats is 7 = 1.108. The Reynolds number

was set at Re = 1.4 x 106. The results described below are for the 1-nozzle/2-blade/1-vane

simulation, which has completed 7 global cycles. A global cycle refers to two rotor airfoils

passing one vane airfoil.

Fifty snapshots of the turbine flow field were recorded during the course of one global

cycle for the purpose of making an animation. Figures 22 thru 26 show instantaneous Mach

number contours at 0%, 20%, 40%, 60% and 80% of a global cycle, respectively. Figures 27

to 31 illustrate instantaneous static pressure contours at the same 5 time increments, while

Figs. 32 thru 36 show instantaneous entropy contours. Note that the small breaks in the

contour lines at the zonal boundaries are due to limitations in the graphics package and not

to interpolation errors in the flow analysis. The graphics package included in the flow analysis

first plots the contour lines on the H-grid, then "blanks" out the appropriate portion and

plots the O-grid contours. Thus, the H- and O-grid contours are generated independently.

Based on the snapshots of the flow field shown in Figs. 22 to 36 the following observations

have been made:

• The absence of strong shock or expansion waves far upstream of the rotor suggest that

the rotor is operating at the unique incidence condition.
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There is a detachedbow shock which stands approximately 3-4% of the rotor axial
chordupstreamof the rotor leadingedge.The shockextendsinto the suctionsideof the
rotor passagewhere it interactswith airfoil the boundary layer. The shock/boundary
layer interaction inducesflow separationat approximately 15%of the axial chord on
the rotor suction surface.

The separatedflow region on the rotor suction surfaceextendsaxially to the trailing
edgeof the airfoil and circumferentially to almost mid-passage(alsoseeFig. 37). The
flow within the separatedregion is subsonic,but the flow in the remainder of the
passageis supersonic.The entropy contoursindicate there is a significant amount of
lossgenerationassociatedwith the separatedflow region.

There is minimal unsteadyinteraction betweenthe rotor and vaneairfoils becauseof
the relatively large axial gap betweenthem.

The flow along the suction surfaceof the vane stays attached until immediately up-
stream of the trailing edge. There is a shallowseparationbubble originating from the
leading edgeof the pressuresurfaceand extendingto approximately 30%of the axial
chord (also seeFig. 38).

There is a normal shockat approximately53%of the axial chordon the suction surface
of the vane. The shockextendsa maximum of about 25%of the distanceacrossthe
vanepassage;the flow doesnot chokeat any time during the courseof a global cycle.

In an effort to understand the developmentof the losseswithin turbine, instantaneous
total pressurecontours were plotted in axial planes30%of the rotor axial chord upstream
of the rotor passage,midway between the rotor and vane passages,and 47_. of the vane
axial chord downstreamof the vane (seeFigs.39 to 41). Upstreamof the rotor the contours
indicate the presenceof relatively thick endwall boundary layers (seeFig. 39). The reason
for the thicknessof the boundary layers is probably two-fold: 1) the solid wall portions of
the nozzleat the inlet are located adjacentto the endwalls,and 2) the spanwisegrid density
needsto be increased.Note that the freestreamvalueof the non-dimensionaltotal pressure
is Pt/P_ = 9.12 (see Table 3). Moving downstream to the region between the rotor and

vane it is observed that the total pressure is only about 10-20% of its upstream value (see

Fig. 40). There are two regions of low total pressure associated with the rotor wakes, but

also two regions near the shroud endwall where the total pressure is significantly higher.

The source of these high total pressure regions is currently under investigation. Downstream

of the vane there are loss regions associated with the vane wake and the endwall boundary

layers (see Fig. 41).

Table 3 contains the circumferentially and radially averaged flow variables at the inlet

and exit of each blade row. Note that at the inlet only the flow coming through the nozzle,

and not the solid wall values, are included in the average.
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Variable INLET ROTOR VANE
m/n

Mout

Ttin

Ttin

Trout

Trout

2.11

2.11

1.96

1.96

1601 ° R

1601 ° R

1595 ° R

1595 ° R

1.96

1.42

0.47

0.74

1595 ° R

14660 R

1439" R

1464 ° R

0.47

0.47

0.39

0.39

1439 ° R

1439 ° R

1437 ° R

1437 ° R

(Pt/P_)i_

Ctin

O_out

t_out

out

¢o_t

9.12

9.12

7.66

7.66

72.0 °

72.0 °

73.4 °

73.4 °

0.0 °

0.0 °

-7.5 °

-7.5 °

7.66

3.09

1.53

1.85

73.4 °

66.8 °

-6.3 °

-52.0 °

-7.5 °

-4.4 °

-1.6 °

1.3 °

1.53

1.53

1.40

1.40

-6.3 °

-6.3 °

-4.6 °

-4.6 °

-1.6 °

-1.60

-0.30

-0.3 °

Table 3: Average flow quantities.
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Implementation of Parallel Processing Software

The MPICH version of the Message Passing Interface (MPI) software has been down-

loaded and installed on a Silicon Graphics Origin 200 workstation with two R1000 processors

and 320 MB of memory [3]. Sample programs were used to verify the implementation. Tuto-

rials on the MPI protocols have been obtained [3, 4], and the necessary routine calls will soon

be added to the CORSAIR analysis. It is anticipated that the simulation will be distributed

to processors on a per passage basis.

Future Effort

Work during the upcoming quarter will focus on:

• Continuing the implementation of parallel processing software into the computational

analysis

• Continuing the nozzle/blade/vane simulations

References
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Figure 20: Grid topology for FASTRAC turbine (x-y).
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Figure 21" Grid topology for FASTRAC turbine (z-y).
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Figure 22: Mach contours at midspan - 0% cycle.
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Figure 23: Mach contours at midspan - 20% cycle.

36



0.90

0.30 --

Y(in)

n

-0.30 --

Mmin = 0.00

Mrnax = 2.30

I I I I I I
0.20 0.80 1.40

x(i )

2.00

Figure 24: Mach contours at midspan - 40% cycle.
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Figure 25: Mach contours at midspan - 60% cycle.
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Figure 26: Mach contours at midspan - 80% cycle.
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Figure 27: Static pressure contours at midspan - 0% cycle.
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Figure 28: Static pressure contours at midspan - 20% cycle.
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Figure 29: Static pressure contours at midspan - 40% cycle.
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Figure 30: Static pressure contours at midspan - 60% cycle.
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Figure 31: Static pressure contours at midspan - 80% cycle.
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Figure 32: Entropy contours at midspan - 0% cycle.
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Figure 33: Entropy contours at midspan - 20% cycle.
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Figure 34: Entropy contours at midspan - 40% cycle.
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Figure 35: Entropy contours at midspan - 60% cycle.
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Figure 36: Entropy contours at midspan - 80% cycle.
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Figure 37: Relative-frame velocity vectors in the rotor - 80% cycle.
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Figure 38: Relative-frame velocity vectors in the v_ne - 80% cycle.
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Figure 39: Total pressure contours 30% of the rotor axial chord upstream of the rotor - 80%

cycle.
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Figure 40: Total pressure contours midway between the rotor and vane - 80% cycle.
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Figure 41: Total pressure contours 47% of the vane axial chord downstream of the vane -

80% cycle.
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